Cardiorespiratory responses to physical work during and following 17 days of bed rest and spaceflight.
نویسندگان
چکیده
To determine the influence of a 17-day exposure to real and simulated spaceflight (SF) on cardiorespiratory function during exercise, four male crewmembers of the STS-78 space shuttle flight and eight male volunteers were studied before, during, and after the 17-day mission and 17 days of -6 degrees head-down-tilt bed rest (BR), respectively. Measurements of oxygen uptake, pulmonary ventilation, and heart rate were made during submaximal cycling 60, 30, and 15 days before the SF liftoff and 12 and 7 days before BR; on SF days 2, 8, and 13 and on BR days 2, 8, and 13; and on days 1, 4, 5, and 8 after return to Earth and on days 3 and 7 after BR. During 15 days before liftoff, day 4 after return, and day 8 after return and all BR testing, each subject completed a continuous exercise test to volitional exhaustion on a semirecumbent (SF) or supine (BR) cycle ergometer to determine the submaximal and maximal cardiorespiratory responses to exercise. The remaining days of the SF testing were limited to a workload corresponding to 85% of the peak pre-SF peak oxygen uptake (Vo2 peak) workload. Exposure to and recovery from SF and BR induced similar responses to submaximal exercise at 150 W. Vo2 peak decreased by 10.4% from pre-SF (15 days before liftoff) to day 4 after return and 6.6% from pre-BR to day 3 after return, which was partially (SF: -5.2%) or fully (BR) restored within 1 wk of recovery. Workload corresponding to 85% of the peak pre-SF Vo2 peak showed a rapid and continued decline throughout the flight (SF day 2, -6.2%; SF day 8, -9.0%), reaching a nadir of -11.3% during testing on SF day 13. During BR, Vo2 peak also showed a decline from pre-BR (BR day 2, -7.3%; BR day 8, -7.1%; BR day 13, -9.0%). These results suggest that the onset of and recovery from real and simulated microgravity-induced cardiorespiratory deconditioning is relatively rapid, and head-down-tilt BR appears to be an appropriate model of this effect, both during and after SF.
منابع مشابه
Cardiovascular adaptations to long-duration head-down bed rest.
INTRODUCTION Orthostatic hypotension is a serious risk for crewmembers returning from spaceflight. Numerous cardiovascular mechanisms have been proposed to account for this problem, including vascular and cardiac dysfunction, which we studied during bed rest. METHODS Thirteen subjects were studied before and during bed rest. Statistical analysis was limited to the first 49-60 d of bed rest an...
متن کاملCardiac atrophy after bed rest and spaceflight.
Cardiac muscle adapts well to changes in loading conditions. For example, left ventricular (LV) hypertrophy may be induced physiologically (via exercise training) or pathologically (via hypertension or valvular heart disease). If hypertension is treated, LV hypertrophy regresses, suggesting a sensitivity to LV work. However, whether physical inactivity in nonathletic populations causes adaptive...
متن کاملStudy protocol to examine the effects of spaceflight and a spaceflight analog on neurocognitive performance: extent, longevity, and neural bases
BACKGROUND Long duration spaceflight (i.e., 22 days or longer) has been associated with changes in sensorimotor systems, resulting in difficulties that astronauts experience with posture control, locomotion, and manual control. The microgravity environment is an important causal factor for spaceflight induced sensorimotor changes. Whether spaceflight also affects other central nervous system fu...
متن کاملChanges of Cytokines during a Spaceflight Analog - a 45-Day Head-Down Bed Rest
Spaceflight is associated with deregulation in the immune system. Head-down bed rest (HDBR) at -6° is believed to be the most practical model for examining multi-system responses to microgravity in humans during spaceflight. In the present study, a 45-day HDBR was performed to investigate the alterations in human immune cell distributions and their functions in response to various stimuli. The ...
متن کاملBone metabolism and nutritional status during 30-day head-down-tilt bed rest.
Bed rest studies provide an important tool for modeling physiological changes that occur during spaceflight. Markers of bone metabolism and nutritional status were evaluated in 12 subjects (8 men, 4 women; ages 25-49 yr) who participated in a 30-day -6° head-down-tilt diet-controlled bed rest study. Blood and urine samples were collected twice before, once a week during, and twice after bed res...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 100 3 شماره
صفحات -
تاریخ انتشار 2006